ホーム > 通信講座 > Pythonではじめる機械学習入門講座

◆本講座は3ヶ月コースの通信教育講座です。
 開講日から弊社より毎月(計3回)テキストを郵送します。

◆テキストに付属する演習問題に解答していただければ、その解答用紙を講師が添削します。
 模範解答と一緒に添削が終わった解答用紙を弊社からご返送します。
 解答用紙の送付・返送やお問い合わせは基本的に全てEメールでやり取りさせていただきます。

Pythonではじめる機械学習入門講座

~機械学習の概要・用語の理解から、Pythonを用いた教師あり・教師なし学習の基本まで~

※受付を終了しました。

通信講座概要

略称
Python機械学習
通信講座No.
ce190201
開催日
2019年02月14日(木)
講師
愛知県立大学 情報科学部 情報科学科 教授 博士(工学) 小林 邦和 氏
価格
1名で受講した場合: 49,980円(税込)
2名で受講した場合: 49,980円(税込)
3名で受講した場合: 64,800円(税込)
※4名以上で受講される場合はお問い合わせ下さい。
価格関連備考
1口2名まで49,980円(税込)
※同一法人より3名以上受講の場合、1名につき21,600円(税込)でご受講いただけます。
※請求書はお申し込みを受理次第、発送させていただきます。  
スケジュール
2月14日(木) 開講 第1講テキスト発送
3月14日(木) 第1講 演習問題回答締切(必着) 第2講テキスト発送
4月15日(月) 第2講 演習問題回答締切(必着) 第3講テキスト発送
5月15日(水) 第3講 演習問題回答締切(必着)
6月6日(木) 修了書送付予定

<受講にあたって>
※テキストは開講時に郵送しますが、回答は、Microsoft Word、 Excel(Microsoft Office2007~2016)形式で、電子メールで提出していただきます。
※各講の添削結果や模範解答なども、弊社から電子メールにて返信させていただきます。  
趣旨
 本講座は機械学習理論の説明に留まらず、コンピュータ言語の一種であるPythonを用いた演習を通して、機械学習を使える技術にできるように工夫されている。
 第1~3講の趣旨は、それぞれプログラム中に掲載しております。以下をご覧ください。  
プログラム

第1講:機械学習とPythonの基礎

≪趣旨≫
 第1講では、まず1章で機械学習の概要について説明する。その後、2章でPythonの基礎について学び、3章では第2講、及び第3講で実施する機械学習の各手法の演習に備えて、演習環境の構築を行う。

≪プログラム≫
1章 機械学習
 1.1 定義
 1.2 分類
  1.2.1 教師あり学習
  1.2.2 教師なし学習
  1.2.3 強化学習
2章 Python
 2.1 概要
 2.2 どの言語を学ぶか
 2.3 Pythonの優位性
 2.4 Pythonのバージョン
 2.5 文法基礎
  2.5.1 変数
  2.5.2 データ型
  2.5.3 文字列
  2.5.4 リスト
  2.5.5 タプル
  2.5.6 辞書
  2.5.7 型変換
  2.5.8 多重代入
  2.5.9 ブロック
  2.5.10 コメント
  2.5.11 長文
  2.5.12 算術演算子
  2.5.13 複合演算子
  2.5.14 ビット演算子
  2.5.15 関係式
  2.5.16 論理式
  2.5.17 条件分岐
  2.5.18 繰り返し
  2.5.19 関数
  2.5.20 スコープ
3章 演習環境の構築
 3.1 概要
 3.2 インストール(Python)
 3.3 実行方法(Python)
 3.4 ライブラリの使い方
  3.4.1 インストール(外部ライブラリ)
  3.4.2 標準ライブラリ
  3.4.3 NumPy
  3.4.4 Matplotlib
  3.4.5 scikit-learn
 3.5 データセット
4章 参考文献
【演習問題】
 

第2講:教師あり学習

≪趣旨≫
 第2講では、機械学習の三大学習(教師あり学習、教師なし学習、強化学習)の中で、教師あり学習を取り上げ、理論と演習を通して、理解を深めていく。まず1章で、教師あり学習の概要について説明する。その後、教師あり学習の手法として、k最近傍法(2章)、線形モデル(3章)、サポートベクトルマシン(4章)の3つを取り上げ、解説する。同時に、Pythonを用いた演習を通して、理解を深める。

≪プログラム≫
1章 概要
2章 k最近傍法

 2.1 クラス分類への適用
 2.2 回帰への適用
 2.3 k最近傍法の特徴
3章 線形モデル
 3.1 回帰への適用
 3.2 クラス分類への適用
 3.3 線形モデルの特徴
4章 サポートベクトルマシン
 4.1 線形モデル
 4.2 非線形モデル
 4.3 サポートベクトルマシンの特徴
5章 参考文献
【演習問題】
 

第3講:教師なし学習

≪趣旨≫
 第3講では、機械学習の三大学習(教師あり学習、教師なし学習、強化学習)の中で、教師なし学習を取り上げ、理論と演習を通して、理解を深めていく。まず1章で、教師なし学習の概要について説明する。その後、教師なし学習の手法として、主成分分析(2章)、k平均法(3章)、凝集型クラスタリング(4章)、DBSCAN(5章)の4つを取り挙げ解説する。さらに、データの前処理(6章)やデータの読み込み(7章)について説明する。同時に、Pythonを用いた演習を通して、理解を深める。

≪プログラム≫
1章 概要
2章 主成分分析
3章 k平均法
4章 凝集型クラスタリング
5章 DBSCAN
6章 データの前処理
7章 データの読み込み
8章 参考文献

【演習問題】  
キーワード
機械学習,Python,AI,人工知能,教師,あり,なし,データ,分析,サポート,ベクトル,マシン,通信講座,通信教育