多種多様なデータを分析し、その利活用ためにベイズ統計をものにするには
ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を用いて解説
ベイズ統計、統計モデリング、マルコフ連鎖モンテカルロ法、ベイズ予測分布、、、、
Rのサンプルプログラムも配布し手を動かしていただく計算も適宜、織り交ぜます
ベイズ分析ツールRStanを用いた各モデルのデータ分析の実践方法も具体的に解説

ベイズ統計・ベイズモデリングの基本の考え方と実践方法【WEBセミナー】
~ベイズ統計学の基礎と各モデルの理解、データ分析・予測の実践~

■ベイズ統計に基いたデータ分析の基本的な方法、考え方■
■ベイズモデリングと予測分布の基本的な方法、考え方■
■ベイズ決定理論に沿った意思決定の基本的な方法、考え方■
■マルコフ連鎖モンテカルロ法の基本■
■ベイズ統計モデリングの各手法とデータ分析実践例■

※受付を終了しました。最新のセミナーはこちら

セミナー概要
略称
ベイズ統計・モデリング【WEBセミナー】
セミナーNo.
st230213
開催日時
2023年02月21日(火) 10:30~16:30
主催
サイエンス&テクノロジー(株)
問い合わせ
Tel:03-5857-4811 E-mail:info@rdsc.co.jp 問い合わせフォーム
価格
非会員:  39,600円 (本体価格:36,000円)
会員:  37,620円 (本体価格:34,200円)
学生:  39,600円 (本体価格:36,000円)
価格関連備考
定 価 :1名につき 39,600円(税込)
会員価格:1名につき 37,620円 2名の場合 49,500円、3名の場合 74,250円(税込)

※上記会員価格は受講者全員の会員登録が必須となります。
※同一法人内(グループ会社でも可)による2名同時申込みのみ適用いたします。
※他の割引は併用できません。
※セミナー請求書は代表者のメールアドレスにPDFデータを添付しお送りいたします。
備考
※資料付
※講義中の録音・撮影はご遠慮ください。
※開催日の概ね1週間前を目安に、最少催行人数に達していない場合、セミナーを中止することがございます。

【ライブ配信(Zoom使用)セミナー】
・本セミナーはビデオ会議ツール「Zoom」を使ったライブ配信セミナーとなります。
 PCやスマホ・タブレッドなどからご視聴・学習することができます。
・お申し込み後、接続確認用URL(https://zoom.us/test)にアクセスして接続できるか等ご確認下さい。
・後日、別途視聴用のURLをメールにてご連絡申し上げます。
・セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
講座の内容
受講対象・レベル
・ベイズ統計の基本について効率よく学びたい研究者、実務の方(業種や職種は問いません)
・ベイズ統計に基いたデータ分析や活用方法に興味がある研究者、実務の方(業種や職種は問いません)
・各種ソフトやツールを利用してベイズ分析を行っており基本的な部分をしっかりと理解したい方
習得できる知識
・ベイズ統計に基いたデータ分析の基本的な方法、考え方
・ベイズモデリングと予測分布の基本的な方法、考え方
・ベイズ決定理論に沿った意思決定の基本的な方法、考え方
・マルコフ連鎖モンテカルロ法の基本
・ベイズ統計モデリングの各手法とデータ分析実践例
趣旨
 今や世界の最も貴重な資源は石油ではなくデータであるといわれています。IoTやスマートデバイスの進展により様々な機器から得られる多種多様なビッグデータ。これらの分析と利活用が既に多くの分野で重要な課題になっており、そのための方法論としてベイズ統計や機械学習が注目を集めています。ベイズ統計は条件付き確率に基いて推測するという一貫した考え方ですので、基本的な考え方が理解できれば様々な場面に応用できます。
 そこで、本講座ではベイズ統計及びベイズモデリングの基本的な考え方を多くの例で学んでいきます。特に、様々な職種・業務の方が理解しやすいように、シンプルな活用例をとりあげます。また、Rのサンプルプログラム(受講者に配布)も利用し、手を動かす計算も適宜、織り交ぜています。それに加えて、最近話題のベイズ分析ツールRStanの基礎でもあるアルゴリズム(マルコフ連鎖モンテカルロ法)について説明し、ベイズ統計の各モデリング手法とRStanによるデータ分析・予測の実践例を紹介します。
プログラム

1.イントロダクション:ベイズ統計でなにができるようになるか
 (1)原発でのポンプ故障率の分析例(階層ベイズモデル)

2.条件付き確率とベイズの定理
 (1)確率分布と期待値、分散 
 (2)条件付き確率、独立性
 (3)条件付き確率を活用する
  a.確率と条件付き確率の違い
  b.モンティ・ホール問題
 (4)ベイズの定理とその応用
  a.ベイズの定理と分解公式
  b.応用上の意味
  c.がん診断
  d.ベイズの定理を用いた計算例
 (5)機械学習への応用
  a.迷惑メールフィルタ
  b.迷惑メールの確率
  c.迷惑メールフィルタの仕組み
  d.機械学習の考え方

3.ベイズ統計入門
 (1)統計モデル
  a.推測統計でのデータの解釈
  b.母集団と統計モデル
  c.モデルの明示
  d.基本的な分析の流れ
 (2)事前分布の導入
  a.パラメータの不確実性の表現
  b.データから計算したい条件付き確率
 c.事前分布の導入
 (3)事後分布
  a.事後分布の定義
  b.ベイズ分析の主要な部分

4.事後分布に基いた統計推測
 (1)事前分布の設定の仕方
 (2)共役事前分布
  a.共役事前分布
  b.二項分布+ベータ分布
  c.ポアソン分布+ガンマ分布
  d.正規分布+正規分布
 (3)事後分布に基いたパラメータ推定
  a.ベイズ分析の報告の基本
  b.点推定
  c.信用区間

5.ベイズモデリングと予測分布
 (1)広告効果を確率で評価する
 (2)新規店舗の売上を分布で予測する
 (3)期待損失最小化で中古PCの追加購入台数を決める

6.コンピュータ(計算機)を用いたベイズ分析の実践
 ~各モデリング手法及びRStanによる実行・評価~
 (1)ベイズ分析ツールRStanについて
 (2)モンテカルロ法
  a.ベイズ分析に必要な計算
  b.モンテカルロサンプリング
  c.モンテカルロ積分
  d.IIDサンプル(理想的なモンテカルロサンプル)
 (3)マルコフ連鎖と定常分布
  a.マルコフ連鎖
  b.1次元ランダムウオーク
  c.1次元山登りウオーク
  d.定常分布
 (4)マルコフ連鎖モンテカルロ法(MCMC法)
  a.メトロポリス・ヘイスティングス法(MH法)のアルゴリズム
  b.MH法の実装例とMCMCサンプル
  c.ギブス・サンプラーの概要
  d.ギブス・サンプラーのアルゴリズム
 (5)階層ベイズモデルとその分析例
  a.問題設定
  b.統計モデルの設定
  c.事前分布の設定
  d.分析結果
 (6)一般化線形モデルとその分析例
  a.問題設定
  b.統計モデルの設定
  c.事前分布の設定
  d.分析結果
 (7)状態空間モデルとその分析例
  a.問題設定
  b.統計モデルの設定
  c.事前分布の設定
  d.分析結果

□質疑応答□

関連するセミナー
関連する書籍
関連する通信講座
関連するタグ
フリーワード検索