ホーム > セミナー > 組合せ最適化問題に対する実用的なアルゴリズムとその応用

組合せ最適化問題に対する実用的なアルゴリズムとその応用

※受付を終了しました。最新のセミナーはこちら

セミナー概要

略称
組合せ最適化
セミナーNo.
tr180908  
開催日時
2018年09月18日(火)11:00~16:00
主催
(株)トリケップス
問い合わせ
Tel:03-5857-4811 E-mail:info@rdsc.co.jp 問い合わせフォーム
開催場所
オームビル 
価格
非会員: 50,760円(本体価格:47,000円)
会員: 50,760円(本体価格:47,000円)
学生: 50,760円(本体価格:47,000円)
価格関連備考
お1人様受講の場合 47,000円[税別]/1名
1口でお申込の場合 57,000円[税別]/1口(3名まで受講可能)

講座の内容

趣旨
 産業や学術の幅広い分野における現実問題の多くが最適化問題にモデル化できることが再認識されるようになりました.特に,現実世界から収集された大規模データを解析するだけではなく,計画立案や意思決定のために大規模データに基づく最適化問題を現実的な計算時間で解くことが求められています
本講義では,産業や学術の幅広い分野における現実問題の解決に数理最適化を活用するための実践的な枠組みを解説します
(1)整数計画ソルバーの利用法とモデル化
 整数計画問題は,産業や学術の幅広い分野における現実問題を定式化できる汎用的な最適化問題の1つです.最近では,整数計画ソルバー(整数計画問題を解くソフトウェア)の進歩がめざましく,現在では,大規模な実務上の最適化問題が次々と解決されています.本講義では,数理最適化の専門家ではない利用者が現実問題に取り組む際に必要となる,整数計画ソルバーの基本的な利用法とモデル化の技法を解説します
(2)メタヒューリスティクスの設計と開発
 整数計画問題は多くの現実問題をモデル化できる汎用的な最適化問題ですが,整数計画ソルバーでは現実的な計算時間で最適解を求めることが困難な事例は少なくありません.しかし,現実には,最適解である保証はなくても現実的な計算時間で十分に精度の高い解が求まれば満足の行く事例が多いです.局所探索法は,そのような計算困難な組合せ最適化問題に対する近似解法の基本的な戦略の1つであり,多くのメタヒューリスティクスは局所探索法にさまざまなアイデアを加えて拡張したものと位置づけることができます.本講義では,現実問題に対してメタヒューリスティクスを開発する際に必要となる,局所探索法およびメタヒューリスティクスの基本的な枠組みと,効率的なアルゴリズムを実現するためのアイデアを具体的な事例を交えながら解説します
プログラム
1 組合せ最適化問題とその応用
  1.1 最適化手法による問題解決アプローチ
  1.2 組合せ最適化問題とその応用例
  1.3 組合せ最適化問題の難しさ
  1.4 計算困難な組合せ最適化問題に対するアプローチ

2 整数計画ソルバーの利用法とモデル化
  2.1 線形計画問題と整数計画問題
  2.2 整数計画ソルバーの現状
  2.3 整数計画ソルバーの利用法
  2.4 線形計画問題のモデル化
  2.5 整数計画問題のモデル化

3 メタヒューリスティクスの設計と開発
  3.1 メタヒューリスティクス
  3.2 貪欲法と局所探索法
  3.3 局所探索法の設計と開発
  3.4 メタヒューリスティクスの枠組み 
キーワード
組合わせ,整数計画,研修,講習会,セミナー