画像の品質を高精度に評価する方法のノウハウ【WEBセミナー】
~PSNR(リファレンス型)から最新の畳み込みニューラルネットワーク法(ノンリファレンス型)まで~
 
※本セミナーは開催日が5月21日から変更になりました

セミナー概要
略称
画像品質【WEBセミナー】
セミナーNo.
tr210508
開催日時
2021年09月01日(水) 10:00~16:00
主催
(株)トリケップス
問い合わせ
Tel:03-5857-4811 E-mail:info@rdsc.co.jp 問い合わせフォーム
講師
埼玉大学大学院 理工学研究科 教授(工学博士)島村 徹也 氏
<経歴>   
 1986年、慶應義塾大学理工学部卒。1991年、慶應義塾大学大学院博士課程修了、工学博士。同年、埼玉大学情報工学科助手。1995年ラフバラ大学、 1996年ベルファーストクイーンズ大学(ともに連合王国)客員研究員。1998年、埼玉大学助教授。2007年埼玉大学教授。
価格
非会員:  51,700円 (本体価格:47,000円)
会員:  51,700円 (本体価格:47,000円)
学生:  51,700円 (本体価格:47,000円)
価格関連備考
お1人様受講の場合 51,700円[税込]/1名
1口でお申込の場合 62,700円[税込]/1口(3名まで受講可能)
※4名以上お申し込みの場合は、ご連絡ください
備考
★本セミナーの受講にあたっての推奨環境は「Zoom」に依存しますので、ご自分の環境が対応しているか、お申込み前にZoomのテストミーティング(http://zoom.us/test)にアクセスできることをご確認下さい。

★インターネット経由でのライブ中継のため、回線状態などにより、画像や音声が乱れる場合があります。講義の中断、さらには、再接続後の再開もありますが、予めご了承ください。

★受講中の録音・撮影等は固くお断りいたします。
講座の内容
趣旨
 今、産業界で、画像の品質を高精度に計測する方法が求められております。これまでの、多くの人に評価値を求め、それらを集計していく主観的評価方法から、コンピュータに自動的に評価値を算出してもらう客観的評価法へとシフトして行っています。しかしながら、特に国内では、客観的評価方法の中のPSNRなどのごく限られた評価方法しか用いられていないことがよくありますが、現在では様々な方法が存在してします。本セミナーでは、その基礎から最先端の方法までを丁寧に解説し、どのような利用の仕方があるのかの理解を深めて頂くことを目的と致します。
 画像品質の客観的評価方法は、元画像を利用するスタイルによって、リファレンス型、低減リファレンス型、ノンリファレンス型に区分できます。それぞれに特徴があり、それらを解説していきますが、講師のこれまでの音声、画像にまたがる研究の知見から、リファレンス型においては、組み合わせ法という高精度な結果が得られる方法の紹介も致します。また、1枚の画像のみが与えられたときに、1000人分の主観評価値と同じ値を算出する、ノンリファレンス型の畳み込みニューラルネットワーク法を講師の研究グループが研究開発したのですが、その内容をご紹介致します。デモもお見せする予定です。このような方法を用いると、大量の画像の中から、高品質な画像のみを自動抽出したり、画像の品質の順位付けを自動に行ったりすることができるようになります。
 画像処理手法の研究やコーデックの開発などにも出力画像の評価が必要です。場合によると、特定の劣化パターンに対応する評価が必要かもしれません。比較的軽視されている感がある画像の品質評価について、講師の持っている知見をできる限りお伝えできればと考えております。
プログラム

 1 画像の品質評価
  1.1 主観評価
  1.2 客観的評価

 2 客観的評価方法
  2.1 フルリファレンス型
  2.2 低減リファレンス型
  2.3 ノンリファレンス型

 3 フルリファレンス型
  3.1 PSNR(Peak Signal to Noise Ratio)
  3.2 SSIM(Structural Similarity)
  3.3 FSIM(Feature Similarity)
  3.4 組み合わせ法
  3.5 その他

 4 低減リファレンス法

 5 ノンリファレンス型
  5.1 畳み込みニューラルネットワーク法(CNN)
  5.2 最近の方法

 6 応用例
  6.1 高品質な画像のみを自動選択
  6.2 画像品質の自動順位付け
  6.3 フェイク画像の発見
  6.4 車載などの動画へ利用
  6.5 その他各種

 7 今後の発展

関連するセミナー
関連する書籍
関連するタグ
フリーワード検索