ホーム > セミナー > Chainerを利用したDeepLearningプログラムの基礎と実際

Chainerを利用したDeepLearningプログラムの基礎と実際

※会場が変更になりました(12/14)

※受付を終了しました。最新のセミナーはこちら

セミナー概要

略称
Chainer
セミナーNo.
tr170106  
開催日時
2017年01月27日(金)13:00~17:00
主催
(株)トリケップス
問い合わせ
Tel:03-5857-4811 E-mail:info@rdsc.co.jp 問い合わせフォーム
開催場所
中央大学駿河台記念館 
価格
非会員: 46,440円(税込)
会員: 46,440円(税込)
学校関係者: 46,440円(税込)
価格関連備考
お1人様受講の場合 46,440円(43,000円+税)/ 1名
1口でお申込の場合 60,480円(56,000円+税)/ 1口(3名まで受講可能)

講座の内容

受講対象・レベル
・Deep Learning のプログラムが何をやっているかを知りたい方
・Deep Learning のプログラムの作成方法を知りたい方
・Chainer で Deep Learning のプログラムの作り方を知りたい方
必要な予備知識
・機械学習とは何かくらいは知っている方
・プログラミングの経験のある方・またはプログラムの基本をある程度
 ご存じの方(どんな言語でもよいですが、少しでもプログラミング経験が
 あれば大丈夫だと思います)
・Python のエキスパートである必要はありませんが、ある程度、
 その文法を知っている方が理解しやすいと思います。
習得できる知識
・最急降下法と誤差逆伝播法について理解できます
・Chainer による Deep Learning のプログラム作成法が習得できます
・GPU の導入方法と Chainer からの使い方が理解できます
趣旨
 現在、人工知能の分野では Deep Learning という技術が注目されています。メディアにも頻繁に取り上げられ、Deep Learning がどういう技術で、どういったことができるのかは、ある程度、認知されているとは思います。
 ただ Deep Learning のプログラムは何をやっているのか、どうやって作成すればよいのかなどのプログラムに関する部分は、まだ広くは知られていないと思います。
 通常、Deep Learning のプログラムを作るには、Deep Learning のフレームワークを利用します。そして従来から様々なフレームワークが提案されてきましたが、どれも皆、対象とするネットワークがサンプルプログラムのものと違ってしまうと、とたんにプログラミングが困難になってしまいます。このような状況において、2015年6月に (株) PFI が Chainer というDeep Learning のフレームワークを公開しました。Chainer は複雑なネットワークでも、簡単にDeep Learning のプログラムが書けるという大きな特徴があります。
 本講座では Chainer を使った Deep Learning のプログラム作成法を示します。簡単なネットワークでも、複雑なネットワークでも、作り方は同じであることを理解し、Chainer を用いて、自分の考えたモデルに対するDeep Learning のプログラムが書けるようになることを目指します。 またプログラムの書き方が分かれば、Deep Learning についてもう一歩深く理解できると思います。
プログラム
1. ニューラルネット
 Deep Learning をニューラルネットという観点から説明します。
 Deep Learning は簡単に言ってしまえば従来のニューラルネットを
 多層にしたものです。なぜこれまで多層にできなかったのか、なぜ
 多層にすることで、これほどの成果が出せるのかを説明します。
   1.1 ニューラルネットとは何か
   1.2 ニューラルネットの層の数
   1.3 多層にする工夫

2. 最急降下法と誤差逆伝播法
 ニューラルネットは訓練データから関数を推定する回帰のモデルです。
 その推定方法が最急降下法になります。ニューラルネットの関数のモ
 デルはネットワークなので、この最急降下法がいわゆる誤差逆伝播法
 と呼ばれるものであることを解説します。
   2.1 ニューラルネットにおける学習
   2.2 目的関数
   2.3 最急降下法

3. Chainer の仕組み
 Deep Learning の学習も関数を推定する回帰の問題であり、最急降下
 法が使われます。最急降下法では勾配を求める部分がポイントです。
 Chainer ではどのように勾配を求めるのかを説明します。具体的に
 Chainer のプログラムで利用するオブジェクトを説明しながら、どの
 ように関数を推定しているのかを確認してゆきます。
   3.1 合成関数と計算グラフ
   3.2 計算グラフを利用した勾配計算
   3.3 Chainer 基本オブジェクト
    3.3.1 Variable
    3.3.2 functions
    3.3.3 links
   3.4 最適化

4. Chainer の基本プログラム
 まず Chainer のプログラムのひな形を示します。次に簡単な分類問題を
 例として、その問題を解く Chainer のプログラムをひな形に沿って作っ
 て見ます。またミニバッチによる動作及び誤差の累積による動作を簡単な
 例で示し、それらの違いを説明します。
   4.1 Chainer のプログラムのひな形
   4.2 パラメータ推定
   4.3 Chainer による分類問題の分類器構築プログラム
   4.4 ミニバッチ
   4.5 誤差の累積

5. Recurrent Neural Network
 Recurrent Neural Network (RNN) は従来のフィードフォワード型のネット
 ワークではなく、少し複雑なネットワークです。どういうネットワークで
 何に使えるかを説明した後に、Chainer による RNN のプログラムを示します。
 ただしChainer が提供する L.LSTM は用いずに、ネットワークの図から LSTM を
 Chainer で作成する方法を示します。
   5.1 RNN とは何か
   5.2 RNN のネットワーク図
   5.3 Chainer による RNN のプログラム
   5.4 LSTM 
   5.5 LSTM のネットワーク図
   5.6 Chainer による LSTM のプログラム

6. GPU の利用
 現在、Deep Learning の学習には GPU は必須と言えます。導入に際しての
 基礎知識と、Chainer からの利用方法を説明します。
   6.1 GPU とは何か
   6.2 GPU の選択
   6.3 CUDA の導入
   6.4 cuDNN の導入
   6.5 CuPy
   6.6 Chainer での GPU の利用

関連するセミナー

関連する書籍・DVD

関連するタグ