これからはじめる方の第一歩に、
興味はあるからまずは概要を、とお考えの方にも。
後で読み返してもわかりやすいテキスト+期間中何度でも視聴できるアーカイブ映像だけでなく、
希望者には、AI構築・計算方法Excel資料をご提供します。(※提供方法の詳細は講義時にご案内します)
復習/実務での活用のしやすさ満点です。
アーカイブ配信付
1.人工知能技術の概要
1) 要素技術者から見た開発ツールとしての人工知能技術
2) 参考:データ採取のポイント(ビッグデータの誤解)
3) 要素技術者に適した人工知能構築ツール
2.【事例 MTシステム活用】未学習の未知異常検知技術(異常モニタリング、予防保全技術)
【事前に学習できない未知の異常・不良を検出したい場合の対処方法を、
エンジンの異常音など、聴感による官能検査工程を自動化した事例を元に解説】
1) 背景:異常音で判断する官能検査工程の紹介
2) 定義できる不良音と定義できない不良音。未知の不良を見つける必要性
3) MTシステム(MT法)とは
4) 人工知能活用の実施手順
5) データ収集、及び人工知能による異常音推定システム構築例
6) システムの動作フローチャート
7) 本事例を応用可能な別事例の紹介
3.全体質疑応答
※説明の順序が入れ替わる場合があります。
※参考資料: MTシステムと対比で理解促進のための事例掲載(解説なし)
【事例 ニューラルネットワークモデル活用】
加工状況データから加工品質を推定する検査機レス検査技術(仮想検査技術、センサレスセンシング技術)
【溶接の抜取り破壊検査工程を、溶接と同時に溶接強度を推定し、
全数検査と量産品質トレンドや設備状態のモニタリングを可能にした事例を解説】
1) 背景:溶接と抜取り破壊検査の紹介
2) 全数検査化に先立つ要素技術
3) 人工知能活用の実施手順
4) データ収集、及び人工知能による強度推定のシステム構築例
5) システムの動作フローチャート
6) 本事例を応用可能な別事例の紹介