AI外観検査導入のための基礎と進め方・留意点【LIVE配信】
~AI画像認識技術の基礎、導入プロジェクトの進め方、品質保証への対応~

Zoomを使ったWEBセミナーです。在宅、会社にいながらセミナーを受けられます。

セミナー概要
略称
AI外観検査【WEBセミナー】
セミナーNo.
開催日時
2021年12月07日(火) 12:30~16:30
主催
(株)R&D支援センター
問い合わせ
Tel:03-5857-4811 E-mail:info@rdsc.co.jp 問い合わせフォーム
講師
兵庫県立大学 大学院工学研究科 電子情報工学専攻 准教授 博士(工学)森本 雅和 氏

【略 歴】   
1998年3月 大阪大学大学院 工学研究科 通信工学専攻 博士後期課程修了
1998年4月~2004年3月 姫路工業大学 工学部 助手
2004年4月~2014年9月 兵庫県立大学大学院 工学研究科 助手・助教
2014年10月~ 兵庫県立大学 大学院 工学研究科 准教授
2019年4月~ 兵庫県立大学 先端医工学研究センター 副センター長
2019年4月~ 兵庫県立大学 人工知能研究教育センター 兼務
価格
非会員:  49,500円 (本体価格:45,000円)
会員:  46,200円 (本体価格:42,000円)
学生:  49,500円 (本体価格:45,000円)
価格関連備考
会員の方あるいは申込時に会員登録される方は、受講料が1名49,500円(税込)から
 ・1名46,200円(税込)に割引になります。
 ・2名申込の場合は計49,500円(2人目無料)になります。両名の会員登録が必要です。
 ・10名以上で申込される場合は大口割引(総額165,000円~)があります。
  お気軽にメールでご相談ください。info@rdsc.co.jp
■会員登録とは? ⇒ よくある質問
備考
【Zoomを使ったWEB配信セミナー受講の手順】
1)Zoomを使用されたことがない方は、こちら からミーティング用Zoomクライアントを
  ダウンロードしてください。ダウンロードできない方はブラウザ版でも受講可能です。
2)セミナー前日までに必ず動作確認をお願いします。Zoom WEBセミナーのはじめかたに
  ついては こちら をご覧ください。
3)開催日直前にWEBセミナーへの招待メールをお送りいたします。当日のセミナー開始
  10分前までに招待メールに記載されている視聴用URLよりWEB配信セミナーにご参加
  ください。

・セミナー資料は開催前日までにお送りいたします。
 ご自宅への送付を希望の方はコメント欄にご住所などをご記入ください。
 無断転載、二次利用や講義の録音、録画などの行為を固く禁じます。
講座の内容
受講対象・レベル
・AI関連技術・画像認識技術による外観検査業務の効率化や自動化・無人化を検討中の方、着手し始めた方
必要な予備知識
特に予備知識は必要ありません。基礎から解説いたします
習得できる知識
・AI画像認識技術の基礎・原理
・AI画像認識システム導入の進め方
・画像取得の際の留意点
趣旨
 ここ数年、AI(人工知能)の応用が急速に進展しています。劇的な認識率の向上をもたらしAI分野を発展させたのが、「Deep Learning(深層学習)」のアルゴリズムであり、実装が容易なライブラリの登場により、画像認識を中心に利用例が報告されています。
 かたや、製造現場ではAI外観検査(画像識別)を中心に導入プロジェクトが立ち上がっていますが、狙った識別精度が得られず、導入に至らない例が聞かれます。画像データの前処理にかかる負担や良品・不良品データの不均衡がおもな原因にあげられます。また、特にDeep Learningでは識別にかかる根拠がわかりにくく、品質保証の観点から導入を見送る現場も多いです。
 そこで、本講座は中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説します。
プログラム

1.AI画像認識システムの動向と導入基礎
 1-1 AI画像認識の基礎
 1-2国内外のAI画像認識の最新事例
 1-3 AI画像認識システムのメリット
 1-4 AI画像認識システム導入時の留意点
 1-5「機械学習」と「深層学習」の選択

2.AI画像認識システムの各種実例
 2-1 パン識別システム「BakeryScan」の特徴と実際
  (1) BakeryScanのシステム構成
  (2) BakeryScanの画像処理(特徴量の抽出方法等)
  (3) パン識別にかかる課題
  (4) 現場導入時の課題
  (5) BakeryScanのアルゴリズムの改良
 2-2 不織布画像検査システムの特徴と実際
  (1) 不織布の異物検査
  (2) 既存の画像検査システムの課題
  (3) 不織布画像検査システムの構成と特徴
  (4) 機械学習による異物判別
 2-3 油圧部品についての自動外観検査システムの特徴と実際
  (1) 外観検査の課題
  (2) 正常・異常判別と機械学習による2クラス分類
  (3) AIの限界とデータセットの不均衡
  (4) ONE Class SVM(OCSVM)による良品学習
  (5) OCSVMの課題とVAEによる異常検出
  (6) 導入した外観検査システムとロボットのハンドカメラによる撮像
  (7) VAEによる傷検出と誤検出の改善

3.AI外観検査のはじめ方と機械学習を意識した画像データ準備・前処理
 3-1 AI外観検査の進め方
  (1) 検査項目の網羅と評価基準の明確化
  (2) 試作開発の前段階における概念実証(PoC)
 3-2 機械学習を意識した画像データ(学習データ)の準備
  (1) 画像撮影時の注意点
  (2) オススメのPoC用撮影環境
 3-3 学習が難しい画像
  (1) 撮影環境や条件のばらつき
  (2) 背景によるご認識の例
 3-4 学習しやすい画像のための前処理

4.学習データの量と質の課題
 4-1 学習データの準備にかかる負荷(画像の収集、ラベルの付与)
 4-2 学習データはどの程度必要か
 4-3 外観検査における学習データの質の課題(データの不均衡)
 4-4 学習データの拡張(Data Augmentation)
 4-5 ラベル付き公開データセットと転移学習による対応

5.識別根拠の課題と品質保証への対応
 5-1 Deep Learningは内部分析が困難
 5-2 説明可能性・解釈性(XAI)に関する技術
 5-3 Deep Learningが着目しているところ(Grad-CAM)

6.AI画像認識システム導入の進め方
 6-1 要求定義の取りまとめ
 6-2 AI機能の選定
 6-3 社内教育とプロジェクトの立ち上げ方(産学連携助成の活用等)
 6-4 学習データの準備とその留意点
 6-5 概念実証(PoC)の特徴・考え方・進め方
 6-6 ラインでの実運用
 6-7 運用による精度向上

キーワード
外観検査,AI,画像検査,セミナー
関連するセミナー
関連する書籍
関連するDVD
関連する通信講座
関連するタグ
フリーワード検索