◎半導体後工程に関連した最新技術を扱う国際会議ECTC2022での発表を分かりやすくレビュー。
◎解説するテーマは、各種インターポーザ、チップレット、3D-IC/TSV、Cu-Cuハイブリッド接合等に関連したプロセス技術・材料技術です。先端パッケージング・実装技術の最新動向の把握、情報収集にお役立てください。

<ECTC2022での発表を解説>
先端半導体パッケージング・実装技術の研究開発動向【WEBセミナー】
~最新の技術発表を、その特長・開発背景等を含めて解説~
~インターポーザ、チップレット、3D-IC/TSV、Cu-Cuハイブリッド接合等のプロセスと材料技術~

※受付を終了しました。最新のセミナーはこちら

セミナー概要
略称
半導体パッケージング【WEBセミナー】
セミナーNo.
st220916
開催日時
2022年09月27日(火) 13:00~16:30
主催
サイエンス&テクノロジー(株)
問い合わせ
Tel:03-5857-4811 E-mail:info@rdsc.co.jp 問い合わせフォーム
価格
非会員:  35,200円 (本体価格:32,000円)
会員:  33,440円 (本体価格:30,400円)
学生:  35,200円 (本体価格:32,000円)
価格関連備考
定 価 :1名につき 35,200円(税込)
会員価格:1名につき 33,440円 2名の場合 44,000円、3名の場合 66,000円(税込)

※上記会員価格は受講者全員の会員登録が必須となります。
※同一法人内(グループ会社でも可)による2名同時申込みのみ適用いたします。
※他の割引は併用できません。
※セミナー請求書は代表者のメールアドレスにPDFデータを添付しお送りいたします。
備考
資料付き
※講義中の録音・撮影はご遠慮ください。
※開催日の概ね1週間前を目安に、最少催行人数に達していない場合、セミナーを中止することがございます。

【ライブ配信(Zoom使用)セミナー】
・本セミナーはビデオ会議ツール「Zoom」を使ったライブ配信セミナーとなります。
 PCやスマホ・タブレッドなどからご視聴・学習することができます。
・お申し込み後、接続確認用URL(https://zoom.us/test)にアクセスして接続できるか等ご確認下さい。
・後日、別途視聴用のURLをメールにてご連絡申し上げます。
・セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
講座の内容
受講対象・レベル
◎半導体後工程(半導体パッケージング、半導体実装技術)に関する最新の研究発表の内容を知りたい方
◎今年オンサイトで行われたECTC2022に参加できなかった方
◎ECTC2023に投稿し2023年2月にfull paperを書く予定の方
◎この分野の動向や見どころ、方向性に関心のある方 を主対象といたします。
習得できる知識
半導体パッケージング技術最大の国際会議ECTC、特に今回はECTC2022で発表された研究内容を多く取り上げ、関連する技術の背景や他の技術との比較も含めて、その特長や技術の進展について初心者でも分かりやすく説明します。
趣旨
 近年、特に話題を集める半導体後工程ですが、これに関連した数ある国際会議の中でも最も大きく最新の技術が発表されるのがECTC (Electronic Components and Technology Conference)です。
 今回のセミナーでは、半導体パッケージングの最新の動向を紹介し、2022年6月に終えたECTC2022の中から各種インターポーザ、チップレット、3D-IC/TSV、Cu-Cuハイブリッド接合等に関連したプロセス技術・材料技術の発表を中心にハイライトを行います。ECTC2022の総発表件数362件(ポスター110件含む)から60件以上の注目の発表をピックアップして解説する予定です。
プログラム

1. ECTCの紹介と最近の研究動向、および用語の説明
 1.1 ECTCの発表件数の推移や国別/研究機関別投稿状況
 1.2 3D-IC/TSV技術(Via-middle vs. Via-last, Wafer-on-Wafer vs. Chip-on-Wafer他)
 1.3 FOWLP(Fan-Out Wafer-Level Packaging)とCoWoS (Chip-on-Wafer-on-Substrate)
 1.4 チップレット

2. RDLインターポーザ 9件
 2.1 Session 1: Advanced Packaging for Heterogeneous Integration and High Performance Computing
  ・Paper 1. Organic Interposer CoWoS-R+(plus) Technology 【TSMC】
  ・Paper 6. 2.3D Hybrid Substrate with Ajinomoto Build-Up Film for Heterogeneous Integration 【Unimicron】
 2.2 Session 19: Advances in Fan-Out Panel Level Packaging
  ・Paper 5. Panel-Based Large-Scale RDL Interposer Fabricated Using 2-Micron Pitch Semi-Additive Process
   for Chiplet-Based Integration【DNP】
 2.3 Session 20: Enhancements in Fine-Pitch Interconnects, Redistribution Layers and Through-Vias
  ・Paper 1. A Study of Failure Mechanism in the Formation of Fine RDL Patterns and Vias
   for Heterogeneous Packages in Chip Last Fan-Out Panel Level Packaging 【Samsung】
 2.4 Session 30: High-Speed Challenges in Power and Signal Integrity
  ・Paper 3. Optimization of 2.5D Organic Interposer Channel for Die and Chiplets【Applied Materials】
 2.5 Session 31: Fan-Out Packaging Technologies and Applications
  ・Paper 4. Advanced Chip Last Process Integration for Fan-Out Wafer Level Packaging (WLP) 【Samsung】
    ・Paper 6. Chip-Last FOWLP Based Antenna-in-Package (FO-AiP) for 5G mmWave Application 【RFcore】
 2.6 Session 37: Interactive Presentation 1
  ・Paper 11. Mechanical and Thermal Characterization Analysis of Chip-Last Fan-Out Chip on Substrate【ASE】
 2.7 Session 39: Interactive Presentation 3
  ・Paper 2. Chip Last Fan-Out Chip on Substrate (FOCoS) Solution for Chiplets Integration 【ASE】

3. Si Bridge 4件
 3.1 Session 13: Technologies for Heterogeneous Integration, Automotive and Power Electronics
  ・Paper 7. Dimensional Parameters Controlling Capillary Underfill Flow for Void-Free Encapsulation
   of a Direct Bonded Heterogeneous Integration (DBHi) Si-Bridge Package 【IBM Japan】
 3.2 Session 14: Novel Bonding and and Stacking Technologies
  ・Paper 7. Characterization of Non-Conductive Paste Materials (NCP) for Thermocompression
   Bonding in a Direct Bonded Heterogeneously Integrated (DBHi) Si-Bridge Package 【IBM Japan】
 3.3 Session 15: Enhanced Methods & Processes for Heterogeneous Integration Assembly 
  ・Paper 1. Super Fine Jet Underfill Dispense Technique for Robust Micro Joint in Direct Bonded
    Heterogeneous Integration (DBHi) Silicon Bridge Packages 【IBM Japan】
  ・Paper 7. A Self-Aligned Structure Based on V-Groove for Accurate Silicon Bridge Placement
   【University of Sherbrooke & IBM Canada】

4. 狭ピッチマイクロバンプ 2件
 4.1 Session 25: Advancements in 2.5D and 3D Packaging Technology
  ・Paper 5. Low Temperature Backside Damascene Processing on Temporary Carrier Wafer Targeting
   7μm and 5μm Pitch Microbumps for N Equal and Greater Than 2 Die to Wafer TCB Stacking 【IMEC】
 4.2 Session 26: Soldered and Sintered Interconnections
  ・Paper 3. Tight-Pitched 10 m-Width Solder Joints for c-2-c and c-2-w 3D-Integration in NCF Environment
   【Tohoku University & SDM】

5. TSV/TGV 4件
 5.1 Session 4: Hybrid Bonding and Innovations for 3D Integration
  ・Paper 4. The Integration of Grounding Plane into TSV Integrated Ion Trap for Efficient Thermal
   Management in Large Scale Quantum Computing Device 【Nanyang Technological University】
  ・Paper 5. Wafer Stacked Wide I/O DRAM with One-Step TSV Technology 【IME】
 5.2 Session 27: Interconnection Reliability
  ・Paper 6. A Comparative Study of the Thermomechanical Reliability of Fully Filled and Conformal Through
   Glass Via (TGV) 【Corning】
 5.3 Session 34: Processing Enhancements in Fan-Out and Heterogeneous Integration
    ・Paper 7. Buried Power Rails and Nano-Scale TSV: Technology Boosters for Backside Power Delivery
   Network and 3D Heterogeneous Integration 【IMEC】

6. ハイブリッド接合、直接接合 38件
 6.1 Session 4: Hybrid Bonding and Innovations for 3D Integration
  ・Paper 1. 3-Layer Stacking Technology with Pixel-Wise Interconnections for Image Sensors Using
   Hybrid Bonding of Silicon-on-Insulator Wafers Mediated by Thin Si Layers 【NHK】
  ・Paper 2. Wafer to Wafer Hybrid Bonding for DRAM Applications 【SK Hynix】
  ・Paper 3. Analysis of Die Edge Bond Pads in Hybrid Bonded Multi-die Stacks 【Xperi→Adeia】
  ・Paper 6. Recess Effect Study and Process Optimization of Sub-10 μm Pitch Die-to-wafer Hybrid Bonding
   【UCLA】
  ・Paper 7. A Performance Testing Method of Bernoulli Picker for Ultra-Thin Die Handling Application
   【Samsung】
 6.2 Session 5: Bonding Technology: Novel Assembly Methods and Processes
  ・Paper 1. The Influence of Cu Microstructure on Thermal Budget in Hybrid Bonding 【Xperi→Adeia】
  ・Paper 2. Collective Die-to-Wafer Self-Assembly for High Alignment Accuracy and High Throughput 3D
   Integration 【CEA-LETI】
  ・Paper 3. Fine-Pitch 30 μm Cu-Cu Bonding by Using Low Temperature Microfluidic Electroless
   Interconnection 【ASE & National Taiwan University】
  ・Paper 5. Investigation of Low Temperature Co-Co Direct Bonding and Co-Passivated Cu-Cu Direct Bonding
   【National Yang Ming Chiao Tung University】
  ・Paper 6. Process and Design Optimization for Hybrid Cu Bonding Void 【Samsung】
 6.3 Session 8: Hybrid and Direct Bonding Development and Characterization
  ・Paper 1. Development of Face-to-Face and Face-to-Back Ultra-Fine Pitch Cu-Cu Hybrid Bonding 【Sony】
  ・Paper 2. Surface Energy Characterization for Die-Level Cu Hybrid Bonding 【IBM & ASM】
  ・Paper 3. Comprehensive Study on Advanced Chip on Wafer Hybrid Bonding with Copper/Polyimide
   Systems 【Showa Denko Materials & Tohoku University】
  ・Paper 4. Two-Step Ar/N2 Plasma-Activated Al Surface for Al-Al Direct Bonding
   【Nanyang Technological University】
  ・Paper 5. Novel Ga Assisted Low Temperature Bonding for Fine Pitch Interconnects
     【ASE & National Chen Kung University】
  ・Paper 6. Characterization of Die-to-Wafer Hybrid Bonding Using Heterogeneous Dielectrics 【Samsung】
  ・Paper 7. Solder and Organic Adhesive Hybrid Bonding Technology with Non-Strip Type Photosensitive
   Resin and Injection Molded Solder (IMS) 【IBM Japan & Mitsui Chemicals】
 6.4 Session 12: Manufacturing and Assembly Process Modeling
  ・Paper 5. Numerical Evaluation on SiO2 Based Chip to Wafer Hybrid Bonding Performance by Finite
   Element Analysis 【IME】
 6.5 Session 14: Novel Bonding and and Stacking Technologies
  ・Paper 1. Behavior of Bonding Strength on Wafer-to-Wafer Cu-Cu Hybrid Bonding 【Sony】
  ・Paper 2. Development of Polyimide Base Photosensitive Permanent Bonding Adhesive for Middle to Low
   Temperature Hybrid Bonding Process 【HD Microsystems & Showa Denko Materials】
  ・Paper 3. Direct Bonding Using Low Temperature SiCN Dielectrics 【IMEC】
  ・Paper 5. Prolongation of Surface Activation Effect Using Self-Assembled Monolayer for Low Temperature
   Bonding of Au 【Meisei University】
 6.6 Session 16: Hybrid & Direct Bonding Innovation, Optimization & Yield Improvement
  ・Paper 1. The Wafer Bonding Yield Improvement Through Control of SiCN Film Composition and Cu Pad
   Shape 【SK Hynix】
  ・Paper 2. Low Temperature Wafer-to-Wafer Hybrid Bonding by Nanocrystalline Copper 【ITRI】
  ・Paper 3. Cu-SiO2 Hybrid Bonding Yield Enhancement Through Cu Grain Enlargement
   【Tohoku University , T-Micro & JCU】
  ・Paper 4. A Holistic Development Platform for Hybrid Bonding 【Applied Materials】
  ・Paper 5. Low Temperature Fine-Pitch Cu-Cu Bonding Using Au Nanoparticles as Intermediate
   【Tsinghua University】
  ・Paper 6. Wet Atomic Layer Etching of Copper Structures for Highly Scaled Copper Hybrid Bonding and
   Fully Aligned Vias 【TEL America】
  ・Paper 7. A Study on Bonding Pad Structure and Layout for Fine Pitch Hybrid Bonding 【Samsung】
 6.7 Session 25: Advancements in 2.5D and 3D Packaging Technology
  ・Paper 1. A Study on Memory Stack Process by Hybrid Copper Bonding (HCB) Technology 【Samsung】
  ・Paper 4: 3D Packaging for Heterogeneous Integration 【AMD】
 6.8 Session 27: Interconnection Reliability
  ・Paper 5. Fabrication and Reliability Analysis of Quasi-Single Crystalline Cu Joints by Using
   Highly <111>-Oriented Nanotwinned Cu 【National Yang Ming Chiao Tung University】
 6.9 Session 32: Advanced Interconnect and Wire Bond Technologies for Flexible Device Applications
  ・Paper 2. Room-Temperature Cu Direct Bonding Technology Enabling 3D Integration with Micro-LEDs
   【Tohoku University】
  ・Paper 3. Ag to Ag Direct Bonding Via a Pressureless, Low-Temperature, and Atmospheric Stress Migration
   Bonding Method for 3D Integration Packaging 【Osaka University】
 6.10 Session 37: Interactive Presentation 1
  ・Paper 9. Numerical Simulation of Cu/Polymer-Dielectric Hybrid Bonding Process Using Finite Element
   Analysis 【IME】
 6.11 Session 39: Interactive Presentation 3
  ・Paper 3. Die to Wafer Hybrid Bonding for Chiplet and Heterogeneous Integration: Die Size Effects
   Evaluation-Small Die Applications 【Xperi→Adeia】
  ・Paper 4. Yield Improvement in Chip to Wafer Hybrid Bonding【IME】
 6.12 Session 40: Interactive Presentation 4
  ・Paper 6. A Hybrid Bonding Interconnection with a Novel Low Temperature Bonding Polymer System
    【ITRI, Brewer Science, National Tsing Hua University & National Yang Ming Chiao Tung University】

7. その他 4件
 7.1 Session 2: High Performance Dielectric Materials for Advanced Packaging
  ・Paper 1. Ultra-Thin Mold Cap for Advanced Packaging Technology 【Intel/Towa】
 7.2 Session 7: Advanced Flip Chip and Embedded Substrate Technologies
    ・Paper 4. Functional Interposer Embedded with Multi-Terminal Si Capacitor for 2.5D/3D Applications Using
   Planarization and Bumpless Chip-on-Wafer (COW) 【Tokyo Tech, Murata & ITRI】
 7.3 Session 5: Bonding Technology: Novel Assembly Methods and Processes
  ・Paper 7. Laser-Assisted Bonding (LAB) Process and Its Bonding Materials as Technologies Enabling the
   Low-Carbon Era 【ETRI】
 7.4 Session 14: Novel Bonding and Stacking Technologies
  ・Paper 6. Mini LED Array Transferred onto a Flexible Substrate Using Simultaneous Transfer and Bonding
   (SITRAB) Process and Anisotropic SITRAB Film (ASF) 【ETRI & Nexstar Technology】

□ 質疑応答 □

関連するセミナー
関連する書籍
関連するタグ
フリーワード検索